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Introduction

Objective

Create mechanisms to improve coordination of sel�sh agents

Idea: Modify players' objectives by introducing side payments
Examples:Sel�sh routing games (constant edge taxes),
Auctions (pay or penalize players to submit their true values)



Problems

Sel�sh Scheduling

m parallel links(machines), n sel�sh users. User i schedules load wi
on a machine j
PoA=È(logm= log logm) (balls and bins)

Objective: Player i wants to minimize �nishing time

Mechanism: Select scheduling policies of each machine
Conditions:Policies independent to the loads wi(competitive
analysis), Scheduling on a machine should depend only on the loads
assigned to it (decentralized nature)

PoA =
makespan of worst Nash equilibrium

minimum makespan (independent of sceduling policies)
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Problems
Congestion Games (N ;M ; (Ói)i∈N ; (c

j )j∈M )

N :set of players, M set of facilities(edges), Ói : collection of
strategies for player i , cj : N→ R+: cost function of facility j

Generalization

� Players have loads w = (w1; · · · ;wn)
� Assymetric cost functions cji . Cost of player i using facility j is

cji (w
j ) where w j : sum of weights of the players using facility j

Mechanism

� Introduce delays: New cost functions ĉji (w) ≥ cji (w)

� Assign priorities to players: Facility j assigns priorities to
players t1; t2; · · · . Cost of tk cannot be less than
cjtk (wt1 + · · ·+ wtk )
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Coordination models
Coordination models (N ;M ; (Ói)i∈N ; (C

j )j∈M )

N : set of players, M : set of facilities(edges), Ói : collection of
strategies for player i , Ai ∈ Ói : set of facilities, C

j a collection of

cost functions associated with j where C j 3 cj : Rn → Rn .

Coordination model: Set of games

Cost function

Players have load w1; · · · ;wn
When a player does not use the facility, his load is 0 and
cji (w1; · · · ;wi−1; · · · ; 0;wi+1; · · ·wn) = 0

Symmetric game G ∈ (N ;M ; (Ói)i∈N ; (C
j )j∈M )

� cji = cjl ∀i ; l players using j

� cji (w) = cj

 ∑
i uses j

wi
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Coordination models

Coordination model for sel�sh scheduling

N = {1; · · · ;n}: set of players, M = {1; · · · ;n}: set of
machines/facilities, Ói = {{1}; · · · ; {m}}, cj is a cost function if
∀(w1; :::;wn) and ∀S ⊆ N ;maxi∈S c

j
i (w1; :::;wn) ≥

∑
i∈S wi

(max �nish time )

Facility j may introduce delay through cj and order loads (cannot
speed up execution)

Coordination model for weighted congestion game G

If G : (N ;M ; (Ói)i∈N ; (c
j )j∈M ), the coordination model for G is

the set of all games Gi with cost functions
ĉji (w) ≥ cji (w);∀j ∈ M ;∀w
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Coordination Mechanisms(CM)
Correspondence with competitive analysis

Coordination model ↔ Online problem
Coordination mechanism ↔ Online algorithm

Price of anarchy ↔ Competitive ratio

De�nition

A coordination mechanism for a coordination model
(N ;M ; (Ói)i∈N ; (C

j )j∈M ) is a set of cost functions, one for each
facility

Social cost(sc)-Social optimum(opt)

CM c = (c1; :::; cm), set of loads w = (w1; :::;wn), set of strategies
A = (A1; :::;An) ∈ Ó1; :::; Ón , costi :cost incurred by player i

� sc(w ; c;A) = max
i∈N

costi

� opt(w) = inf
c;A

sc(w ; c;A) (independent of the CMs)
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Price of Anarchy

To CM c and w corresponds a game G
Ne(w; c): the set of (mixed) Nash equilibria of G

PoA or Coordination ratio of a CM c

PA(c) = sup
w

sup
E∈Ne(w ;c)

sc(w ; c;E )

opt(w)

PoA of a coordination model

The minimum PoA over all its CMs.
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Sel�sh Scheduling
Hint: Approximation algorithm (greedy) of approximation ratio
4=3− 1=3m. Loads ordered in decreasing size (LPT scheduling)

Observation

Symmetric CM with the same scheduling policy on each facility
have large PoA due to existence of NE where players select facilities
uniformly at random (players \collide")
Example: n = m players with load 1

Situation avoided in pure equilibria
Idea: Introduce delays to break \symmetry\

Coordination Mechanism 1

� Each machine scedules jobs in decreasing order

� machine j intoduces delay j å for small å > 0

Drawback: Jobs not of distinct size, delays j å create ties.
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Sel�sh Scheduling
Coordination mechanism C for sel�sh scheduling

1 Each machine scedules jobs in decreasing order, lexicographic
order to break ties (based on jobs' ID)

2 Di�erent cost on the facilities for each player (unique optimal
machine for each player)

Cost function

Let ä > 0, suppose that job i is to �nish at time ti in machine j .
The machine will release i at time t ′

t ′ = cji (w1; :::;wn) where t
′ = min

k∈[t ;(1+ä)t ]
{k : k mod m + 1 = j}

(representation of t ′ in the (m + 1)− ary system ends in j )

In C with the above cost function, there is a unique minimum cost
facility for each player
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Sel�sh Scheduling
Theorem

Coordination mechanism C for n players and m machines has

PoA 4=3− 1=(3m)

Proof.

For the i − th greater load there is a unique facility with minimum
cost independently of the smaller loads. Exactly the LPT
scheduling , approximation ratio 4=3− 1=(3m).
Delay introduced by ä increases social cost by at most ä

PoA = infä(4=3− 1=(3m) + ä) = 4=3− 1=(3m)
Observation

� There is a unique NE and it has low computational complexity
� Compute PoA(C) ≤p Compute approximation ratio of LPT

Theorem

C for n players and m machines with di�erent speeds has PoA
2− 2=(m + 1)
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Congestion Games

Proposition

Without a CM, the PoA of congestion games is unbounded

Proof(Example)
Single-commodity game with n = 2 players and a � b � 1

NE: A = (A1;A2) ∈ Ó1 × Ó2

(A1;A2) = (ABCD ;ACBD)
OPT:A′ = (A′

1
;A′

2
) = (ABD ;ACD)

PoA = sc(A)=sc(a ′) = (2+ b)=2
arbitarily high
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Series Parallel Congestion Games
Theorem

There are congestion games (even series parallel) for which no

CM has PoA ≥ n, n number of players

Proof(Example)
Network with nodes: v0; :::; vn , parallel edges: (vi ; vi + 1), upper
edge costs: (0; :::; 0; a), lower edge costs: (a; :::; a)

NE:A→ All players select upper
edges
OPT:A′ → Player i selects upper
edges except between ui−1; ui

PoA = sc(A)=sc(A′) = n · a=n = n

Symmetric CM C. In C at least one player incurs cost at least a
between ui−1; ui All stages are independent, so ∃NE s.t. the same
player incurs cost at least a in every stage. PoA = n
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Series Parallel Congestion Games
Theorem

For every series-parallel congestion game there is a CM with

PoA ≤ n

Potential P(A)

A = (A1; :::;An): set of strategies, n
e : number of occurences of

edge e in the paths A1; :::;An then P(A) =
∑

e

∑ne

k=1
ce(k)

A is a NE ⇔ P(A) : local minimum

Lemma 1

∀A : sc(A) ≤ P(A) ≤ n · sc(A)

Proof

• sc(A) = maxi ci = maxi
∑

e∈Ai
ce(ne) ≤

∑
e c

e(ne) ≤
≤

∑
e

∑ne

k=1
ce(k) = P(A)

• P(A) =
∑

e

∑ne

k=1
ce(k) ≤

∑
e n

ece(ne) =
∑

i ci ≤
≤ n maxi ci = n ·sc(A)
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CM for series-parallel networks
Coordination Mechanism C
Let A∗ = (A∗

1
; :::;A∗

2
) an optimal set of strategies, large a � 1

ĉe(k) =


ce(k); k ≤ ne(A∗)

a ·m;∀k when ne(A∗) = 0

a; otherwise

High cost a will discourage players to use edge e more than ne(A∗)
times. P(A) = P(A∗)??

Lemma 2

A∗
1
; :::;A∗n : edge-disjoint s − t paths in a series-parallel multi-graph,

A1; :::;Ak : any other s − t paths with k < n. Then ∃ s − t path
with edges that appear in A∗

1
; :::;A∗n but not in A1; :::;Ak
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with edges that appear in A∗
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CM for series-parallel networks
Proof of Theorem

Series parallel(directed) graph, optimalset of strategies
A∗ = (A∗

1
; :::;A∗n), NE A = (A1; :::;An).

We will show that ∀e;ne(A) ≤ ne(A∗)

� Paths inA use only edges that appear in A∗, else i would
switch to any low cost path in A∗

� Arbitary player i , A−i paths of remaining players.
Lemma 2 ⇒ ∃ path p s.t. ne(A−i) ≤ ne(A∗)− 1;∀e ∈ p

If i uses edge e ′ with ne
′
(A∗) ≤ ne

′
(A) then p is a strategy

for player i with ne(Ai) ≤ ne(A∗);∀e ∈ p (less expensive)

A is NE ⇒ Player i only uses edges e with ne(A) ≤ ne(A∗)

Hence P(A) ≤ P(A∗) and Lemma 1⇒ sc(A) ≤ n · sc(A∗)⇒
PoA = supA

sc(A)
sc(A∗) ≤ n
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Generalization of machine scheduling
Unrelated machine sceduling (R||Cmax )

n players/jobs, m machines , pij processing time of job i in
machine j , ì schedule function: maps each job to a machine,
Mj =

∑
i :j=ì(i) pij makespan of machine j .

Di�erent assumptions on pij yield di�erent sceduling problems

Identical Machine Scheduling (P ||Cmax )

For each job i and machines j ; k pij = pik = pi

Uniform/related machine sceduling (Q ||Cmax )

pij = pi=sj where pi processing requirement of job i and sj speed
of machine j .

Restricted assignment or bipartite sceduling (B ||Cmax )

Job i can be scheduled on Si ⊆ M . pij = pi ; if j ∈ Si and
pij =∞ otherwise
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Di�erent Coordination Mechanisms
Coordination Mechanisms (sets of sceduling policies)

� ShortestFirst: non-decreasing order of jobs

� LongestFirst: non-increasing order of jobs

� Randomized: random order of jobs

� Makespan: Process all jobs on the same machine in parallel
(pji = Mj )

Price of anarchy for the di�erent policies and scheduling

problems



Di�erent Coordination Mechanisms
Coordination Mechanisms (sets of sceduling policies)

� ShortestFirst: non-decreasing order of jobs

� LongestFirst: non-increasing order of jobs

� Randomized: random order of jobs

� Makespan: Process all jobs on the same machine in parallel
(pji = Mj )

Price of anarchy for the di�erent policies and scheduling

problems



Scheduling Policies
Policy is run locally at each machine, no access to information for
the global state (Pj policy for machine j , Sj jobs assigned to j )

� Strong local policy Pj : Only makes use of processing time of
jobs i ∈ Sj on j and assigns i a completition time Pj (Sj ; i)

� Local policy Pj : Makes use of all parameters of jobs i ∈ Sj
and assigns each i a completition time Pj (Sj ; i) (Ex. Uses
processing times of i ∈ Sj on other machines)

� Non-preemtive policy: Processes each job in an
uninterrupted fashion without any delay

� Independence of irrelevant alternatives property(IIA):

For any set S of jobs and i ; i ′ ∈ S , then ∀k job
Pj (S ; i) < Pj (S ; i

′)⇒ Pj (S ∪ {k}; i) < Pj (S ∪ {k}; i ′);
� Ordering policy: Orders the jobs non-preemptively based on
a global ordering (deterministic non-preemtive policy with IIA
is an ordering policy)
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Upper bound for PoA of (R||Cmax )
Notation

� pi = minj pij

� Ine�ciency of job i : eij = pij =pi

� min-weight of set S :
∑

i∈S pi

� W =
∑

1≤i≤n pi

� Mkj : jobs(parts) processed on j after time 2kOPT in a PNE

� Mk =
⋃

1≤j≤m Mkj

� Rkj =
∑

i∈Mkj
pi , if job i partially processed on j for x units

of time after 2kOPT , contributes x=eij = xpi=pij to Rkj

Ine�ciency-based policy

Each machine j orders the jobs assigned to it in the non-decreasing
order of their ine�ciency eij
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Upper bound for PoA of (R||Cmax )
Theorem

PoA for (R||Cmax ) for the ine�ciency-based policy is at most

2 logm + 4

Lemma

∀k ≥ 1;Rk ≤ 1

2
· Rk−1

Proof(Lemma).
Oj jobs processed on machine j by OPT , Okj = Oj ∩Mk ,
fkj minimum ine�ciency (on machine j ) of all i ∈ Okj in the NE
assignment**.
If Okj 6= ∅ then in the NE assignment all jobs i on j with eij ≤ fkj
have ct(i) ≤ (2k − 1)OPT ,
Otherwise i ∈ Okj with eij = fkj would move to j and have
ct(i) ≤ (2k − 1)OPT +OPT = 2kOPT .
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Proof (cont'd)
Hence j processes jobs i of eij ≤ fkj between times (2k − 2)OPT
and (2k − 1)OPT which implies

Rk−1;j − Rkj ≥ OPT=fkj (1)

But i ∈ Okj processed by OPT on j with ine�ciency eij ≥ fkj
hence min-weight of Okj is

∑
i∈Okj

pi ≤
∑

i∈Okj
pij

fkj
= OPT=fkj (2)

(1); (2)⇒ Rk−1;j − Rkj ≥min weight of i ∈ Okj .
Sum over all j , since Mk = ∪jOkj

Rk−1 − Rk ≥ Rk ⇒ Rk−1 ≥ 2Rk
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Proof(Theorem)

For k = b = dlogme
Lemma ⇒ Rb ≤ Rb−1

2
=

Rb−2
4

= · · · = R0

m
= W

m
≤ OPT

(Total processing time of jobs i with eij = 1 at most OPT )

Hence ∀i job , ct(i) ≤ 2bOPT +OPT = (2b + 1)OPT
( worst-case, all jobs with ct(i) > 2bOPT move to the same
machine)

Let job i with ct(i) > 2bOPT , i moves on j with eij = 1
Start time ≤ (2b + 1)OPT , ct(i) ≤ (2b + 2)OPT

Since assignment is a NE
maxict(i) ≤ (2b + 2)OPT ≤ (2 logm + 4)OPT
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