Coordination Mechanisms

Dimitris Sakavalas

May 12, 2011

Outline

Introduction
Problems
Coordination models
Coordination Mechanisms(CM)
Selfish Scheduling
Congestion Games
Generalization of machine scheduling
Bounds for PoA of $\left(R \| C_{\max }\right)$

Introduction

Objective
Create mechanisms to improve coordination of selfish agents
Idea: Modify players' objectives by introducing side payments
Examples:Selfish routing games (constant edge taxes),
Auctions (pay or penalize players to submit their true values)

Problems

Selfish Scheduling

m parallel links(machines), n selfish users. User i schedules load w_{i} on a machine j
PoA $=\Theta(\log m / \log \log m)$ (balls and bins)
Objective: Player i wants to minimize finishing time

Problems

Selfish Scheduling
m parallel links(machines), n selfish users. User i schedules load w_{i} on a machine j
PoA $=\Theta(\log m / \log \log m)$ (balls and bins)
Objective: Player i wants to minimize finishing time Mechanism: Select scheduling policies of each machine Conditions:Policies independent to the loads w_{i} (competitive analysis), Scheduling on a machine should depend only on the loads assigned to it (decentralized nature)

Problems

Selfish Scheduling

m parallel links(machines), n selfish users. User i schedules load w_{i} on a machine j
PoA $=\Theta(\log m / \log \log m)$ (balls and bins)
Objective: Player i wants to minimize finishing time Mechanism: Select scheduling policies of each machine Conditions:Policies independent to the loads w_{i} (competitive analysis), Scheduling on a machine should depend only on the loads assigned to it (decentralized nature)

$$
\text { Po } A=\frac{\text { makespan of worst Nash equilibrium }}{\text { minimum makespan (independent of sceduling policies) }}
$$

Problems

Congestion Games $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(c^{j}\right)_{j \in M}\right)$
N :set of players, M set of facilities(edges), Σ_{i} : collection of strategies for player $i, c^{j}: \mathbb{N} \rightarrow \mathbb{R}_{+}$: cost function of facility j

Problems

Congestion Games $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(c^{j}\right)_{j \in M}\right)$
N :set of players, M set of facilities(edges), Σ_{i} : collection of strategies for player $i, c^{j}: \mathbb{N} \rightarrow \mathbb{R}_{+}$: cost function of facility j

Generalization

- Players have loads $w=\left(w_{1}, \cdots, w_{n}\right)$
- Assymetric cost functions c_{i}^{j}. Cost of player i using facility j is $c_{i}^{j}\left(w^{j}\right)$ where w^{j} : sum of weights of the players using facility j

Problems

Congestion Games $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(c^{j}\right)_{j \in M}\right)$
N :set of players, M set of facilities(edges), Σ_{i} : collection of strategies for player $i, c^{j}: \mathbb{N} \rightarrow \mathbb{R}_{+}$: cost function of facility j

Generalization

- Players have loads $w=\left(w_{1}, \cdots, w_{n}\right)$
- Assymetric cost functions c_{i}^{j}. Cost of player i using facility j is $c_{i}^{j}\left(w^{j}\right)$ where w^{j} : sum of weights of the players using facility j

Mechanism

- Introduce delays: New cost functions $\hat{c}_{i}^{j}(w) \geq c_{i}^{j}(w)$
- Assign priorities to players: Facility j assigns priorities to players t_{1}, t_{2}, \cdots. Cost of t_{k} cannot be less than $c_{t_{k}}^{j}\left(w_{t_{1}}+\cdots+w_{t_{k}}\right)$

Coordination models

Coordination models $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(C^{j}\right)_{j \in M}\right)$
N : set of players, M : set of facilities(edges), Σ_{i} : collection of strategies for player $i, A_{i} \in \Sigma_{i}$: set of facilities, $\mathbf{C}^{\mathbf{j}}$ a collection of cost functions associated with j where $C^{j} \ni c^{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Coordination models

Coordination models $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(C^{j}\right)_{j \in M}\right)$
N : set of players, M : set of facilities(edges), Σ_{i} : collection of strategies for player $i, A_{i} \in \Sigma_{i}$: set of facilities, $\mathbf{C}^{\mathbf{j}}$ a collection of cost functions associated with j where $C^{j} \ni c^{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Coordination model: Set of games

Coordination models

Coordination models $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(C^{j}\right)_{j \in M}\right)$
N : set of players, M : set of facilities(edges), Σ_{i} : collection of strategies for player $i, A_{i} \in \Sigma_{i}$: set of facilities, $\mathbf{C}^{\mathbf{j}}$ a collection of cost functions associated with j where $C^{j} \ni c^{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Coordination model: Set of games
Cost function
Players have load w_{1}, \cdots, w_{n}
When a player does not use the facility, his load is 0 and
$c_{i}^{j}\left(w_{1}, \cdots, w_{i-1}, \cdots, 0, w_{i+1}, \cdots w_{n}\right)=0$

Coordination models

Coordination models $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(C^{j}\right)_{j \in M}\right)$
N : set of players, M : set of facilities(edges), Σ_{i} : collection of strategies for player $i, A_{i} \in \Sigma_{i}$: set of facilities, $\mathbf{C}^{\mathbf{j}}$ a collection of cost functions associated with j where $C^{j} \ni c^{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Coordination model: Set of games

Cost function

Players have load w_{1}, \cdots, w_{n}
When a player does not use the facility, his load is 0 and $c_{i}^{j}\left(w_{1}, \cdots, w_{i-1}, \cdots, 0, w_{i+1}, \cdots w_{n}\right)=0$

Symmetric game $G \in\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(C^{j}\right)_{j \in M}\right)$

- $c_{i}^{j}=c_{l}^{j} \forall i, l$ players using j
- $c_{i}^{j}(w)=c^{j}\left(\sum_{i \text { uses } j} w_{i}\right)$

Coordination models

Coordination model for selfish scheduling
$N=\{1, \cdots, n\}$: set of players, $M=\{1, \cdots, n\}$: set of machines/facilities, $\Sigma_{i}=\{\{1\}, \cdots,\{m\}\}, c^{j}$ is a cost function if $\forall\left(w_{1}, \ldots, w_{n}\right)$ and $\forall S \subseteq N, \max _{i \in S} c_{i}^{j}\left(w_{1}, \ldots, w_{n}\right) \geq \sum_{i \in S} w_{i}$ (max finish time)

Facility j may introduce delay through c^{j} and order loads (cannot speed up execution)

Coordination models

Coordination model for selfish scheduling
$N=\{1, \cdots, n\}$: set of players, $M=\{1, \cdots, n\}$: set of machines/facilities, $\Sigma_{i}=\{\{1\}, \cdots,\{m\}\}, c^{j}$ is a cost function if $\forall\left(w_{1}, \ldots, w_{n}\right)$ and $\forall S \subseteq N, \max _{i \in S} c_{i}^{3}\left(w_{1}, \ldots, w_{n}\right) \geq \sum_{i \in S} w_{i}$ (max finish time)

Facility j may introduce delay through c^{j} and order loads (cannot speed up execution)

Coordination model for weighted congestion game G
If $G:\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(c^{j}\right)_{j \in M}\right)$, the coordination model for G is the set of all games G_{i} with cost functions
$\hat{c}_{i}^{j}(w) \geq c_{i}^{j}(w), \forall j \in M, \forall w$

Coordination Mechanisms(CM)

Correspondence with competitive analysis
Coordination model \leftrightarrow Online problem
Coordination mechanism \leftrightarrow Online algorithm
Price of anarchy \leftrightarrow Competitive ratio

Coordination Mechanisms(CM)

Correspondence with competitive analysis
Coordination model \leftrightarrow Online problem
Coordination mechanism \leftrightarrow Online algorithm
Price of anarchy \leftrightarrow Competitive ratio
Definition
A coordination mechanism for a coordination model $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(C^{j}\right)_{j \in M}\right)$ is a set of cost functions, one for each facility

Coordination Mechanisms(CM)

Correspondence with competitive analysis
Coordination model \leftrightarrow Online problem
Coordination mechanism \leftrightarrow Online algorithm
Price of anarchy \leftrightarrow Competitive ratio
Definition
A coordination mechanism for a coordination model $\left(N, M,\left(\Sigma_{i}\right)_{i \in N},\left(C^{j}\right)_{j \in M}\right)$ is a set of cost functions, one for each facility

Social $\operatorname{cost}(s c)$-Social optimum (opt)
CM $c=\left(c^{1}, \ldots, c^{m}\right)$, set of loads $w=\left(w_{1}, \ldots, w_{n}\right)$, set of strategies $A=\left(A_{1}, \ldots, A_{n}\right) \in \Sigma_{1}, \ldots, \Sigma_{n}$, cost $_{i}$:cost incurred by player i

- $s c(w ; c ; A)=\max _{i \in N} \operatorname{cost}_{i}$
- $\operatorname{opt}(w)=\inf _{c, A} s c(w ; c ; A)$ (independent of the CMs)

Price of Anarchy

To CM c and w corresponds a game G
$\mathrm{Ne}(\mathbf{w} ; \mathbf{c})$: the set of (mixed) Nash equilibria of G
PoA or Coordination ratio of a $\mathrm{CM} c$

$$
P A(c)=\sup _{w} \sup _{E \in N e(w ; c)} \frac{s c(w ; c ; E)}{o p t(w)}
$$

Price of Anarchy

To CM c and w corresponds a game G
$\mathrm{Ne}(\mathbf{w} ; \mathbf{c})$: the set of (mixed) Nash equilibria of G
PoA or Coordination ratio of a $\mathrm{CM} c$

$$
P A(c)=\sup _{w} \sup _{E \in N e(w ; c)} \frac{s c(w ; c ; E)}{o p t(w)}
$$

PoA of a coordination model
The minimum PoA over all its CMs.

Selfish Scheduling

Hint: Approximation algorithm (greedy) of approximation ratio 4/3-1/3m. Loads ordered in decreasing size (LPT scheduling)

Selfish Scheduling

Hint: Approximation algorithm (greedy) of approximation ratio $4 / 3-1 / 3 m$. Loads ordered in decreasing size (LPT scheduling)

Observation

Symmetric CM with the same scheduling policy on each facility have large PoA due to existence of NE where players select facilities uniformly at random (players "collide")
Example: $n=m$ players with load 1

Selfish Scheduling

Hint: Approximation algorithm (greedy) of approximation ratio $4 / 3-1 / 3 m$. Loads ordered in decreasing size (LPT scheduling)

Observation

Symmetric CM with the same scheduling policy on each facility have large PoA due to existence of NE where players select facilities uniformly at random (players "collide")
Example: $n=m$ players with load 1
Situation avoided in pure equilibria
Idea: Introduce delays to break "symmetry"

Selfish Scheduling

Hint: Approximation algorithm (greedy) of approximation ratio $4 / 3-1 / 3 m$. Loads ordered in decreasing size (LPT scheduling)

Observation

Symmetric CM with the same scheduling policy on each facility have large PoA due to existence of NE where players select facilities uniformly at random (players "collide")
Example: $n=m$ players with load 1
Situation avoided in pure equilibria
Idea: Introduce delays to break "symmetry"

Coordination Mechanism 1

- Each machine scedules jobs in decreasing order
- machine j intoduces delay $j \varepsilon$ for small $\varepsilon>0$

Selfish Scheduling

Hint: Approximation algorithm (greedy) of approximation ratio $4 / 3-1 / 3 m$. Loads ordered in decreasing size (LPT scheduling)

Observation

Symmetric CM with the same scheduling policy on each facility have large PoA due to existence of NE where players select facilities uniformly at random (players "collide")
Example: $n=m$ players with load 1
Situation avoided in pure equilibria
Idea: Introduce delays to break "symmetry"

Coordination Mechanism 1

- Each machine scedules jobs in decreasing order
- machine j intoduces delay $j \varepsilon$ for small $\varepsilon>0$

Drawback: Jobs not of distinct size, delays $j \varepsilon$ create ties.

Selfish Scheduling

Coordination mechanism \mathcal{C} for selfish scheduling
(1) Each machine scedules jobs in decreasing order, lexicographic order to break ties (based on jobs' ID)
(2) Different cost on the facilities for each player (unique optimal machine for each player)

Selfish Scheduling

Coordination mechanism \mathcal{C} for selfish scheduling
(1) Each machine scedules jobs in decreasing order, lexicographic order to break ties (based on jobs' ID)
(2) Different cost on the facilities for each player (unique optimal machine for each player)

Cost function

Let $\delta>0$, suppose that job i is to finish at time t_{i} in machine j. The machine will release i at time t^{\prime}

$$
t^{\prime}=c_{i}^{j}\left(w_{1}, \ldots, w_{n}\right) \text { where } t^{\prime}=\min _{k \in[t,(1+\delta) t]}\{k: k \bmod m+1=j\}
$$

(representation of t^{\prime} in the $(m+1)$ - ary system ends in j)

Selfish Scheduling

Coordination mechanism \mathcal{C} for selfish scheduling
(1) Each machine scedules jobs in decreasing order, lexicographic order to break ties (based on jobs' ID)
(2) Different cost on the facilities for each player (unique optimal machine for each player)

Cost function

Let $\delta>0$, suppose that job i is to finish at time t_{i} in machine j. The machine will release i at time t^{\prime}

$$
t^{\prime}=c_{i}^{j}\left(w_{1}, \ldots, w_{n}\right) \text { where } t^{\prime}=\min _{k \in[t,(1+\delta) t]}\{k: k \bmod m+1=j\}
$$

(representation of t^{\prime} in the $(m+1)$ - ary system ends in j)
In \mathcal{C} with the above cost function, there is a unique minimum cost facility for each player

Selfish Scheduling

Theorem
Coordination mechanism \mathcal{C} for n players and m machines has PoA 4/3-1/(3m)

Selfish Scheduling

Theorem

Coordination mechanism \mathcal{C} for n players and m machines has PoA 4/3-1/(3m)

Proof.

For the $i-t h$ greater load there is a unique facility with minimum cost independently of the smaller loads. Exactly the LPT scheduling, approximation ratio $4 / 3-1 /(3 m)$.
Delay introduced by δ increases social cost by at most δ

$$
P o A=i n f_{\delta}(4 / 3-1 /(3 m)+\delta)=4 / 3-1 /(3 m) \quad \square
$$

Selfish Scheduling

Theorem

Coordination mechanism \mathcal{C} for n players and m machines has PoA 4/3-1/(3m)

Proof.

For the $i-t h$ greater load there is a unique facility with minimum cost independently of the smaller loads. Exactly the LPT scheduling, approximation ratio $4 / 3-1 /(3 m)$.
Delay introduced by δ increases social cost by at most δ

$$
P o A=i n f_{\delta}(4 / 3-1 /(3 m)+\delta)=4 / 3-1 /(3 m) \quad \square
$$

Observation

- There is a unique NE and it has low computational complexity
- Compute $\operatorname{Po} A(\mathcal{C}) \leq_{p}$ Compute approximation ratio of LPT

Selfish Scheduling

Theorem

Coordination mechanism \mathcal{C} for n players and m machines has PoA 4/3-1/(3m)

Proof.

For the $i-t h$ greater load there is a unique facility with minimum cost independently of the smaller loads. Exactly the LPT scheduling, approximation ratio $4 / 3-1 /(3 m)$.
Delay introduced by δ increases social cost by at most δ

$$
P o A=i n f_{\delta}(4 / 3-1 /(3 m)+\delta)=4 / 3-1 /(3 m) \quad \square
$$

Observation

- There is a unique NE and it has low computational complexity
- Compute $\operatorname{PoA}(\mathcal{C}) \leq_{p}$ Compute approximation ratio of LPT

Theorem

\mathcal{C} for n players and m machines with different speeds has PoA $2-2 /(m+1)$

Congestion Games

Proposition
Without a CM, the PoA of congestion games is unbounded

Congestion Games

Proposition

Without a CM, the PoA of congestion games is unbounded

Proof(Example)

Single-commodity game with $n=2$ players and $a \gg b \gg 1$

Congestion Games

Proposition

Without a CM, the PoA of congestion games is unbounded
Proof(Example)
Single-commodity game with $n=2$ players and $a \gg b \gg 1$

$$
\begin{aligned}
& \text { NE: } A=\left(A_{1}, A_{2}\right) \in \Sigma_{1} \times \Sigma_{2} \\
& \left(A_{1}, A_{2}\right)=(A B C D, A C B D) \\
& \text { OPT: } A^{\prime}=\left(A_{1}^{\prime}, A_{2}^{\prime}\right)=(A B D, A C D) \\
& P o A=s c(A) / s c\left(a^{\prime}\right)=(2+b) / 2 \\
& \text { arbitarily high }
\end{aligned}
$$

Series Parallel Congestion Games

Theorem

There are congestion games (even series parallel) for which no $C M$ has Po $A \geq n$, n number of players

Proof(Example)

Network with nodes: v_{0}, \ldots, v_{n}, parallel edges: $\left(v_{i}, v_{i}+1\right)$, upper edge costs: $(0, \ldots, 0, a)$, lower edge costs: (a, \ldots, a)

Series Parallel Congestion Games

Theorem

There are congestion games (even series parallel) for which no $C M$ has PoA $\geq n$, n number of players

Proof(Example)

Network with nodes: v_{0}, \ldots, v_{n}, parallel edges: $\left(v_{i}, v_{i}+1\right)$, upper edge costs: $(0, \ldots, 0, a)$, lower edge costs: (a, \ldots, a)

NE: $A \rightarrow$ All players select upper edges OPT: $A^{\prime} \rightarrow$ Player i selects upper edges except between u_{i-1}, u_{i}

$$
P o A=s c(A) / s c\left(A^{\prime}\right)=n \cdot a / n=n
$$

Series Parallel Congestion Games

Theorem

There are congestion games (even series parallel) for which no $C M$ has PoA $\geq n$, n number of players

Proof(Example)

Network with nodes: v_{0}, \ldots, v_{n}, parallel edges: $\left(v_{i}, v_{i}+1\right)$, upper edge costs: $(0, \ldots, 0, a)$, lower edge costs: (a, \ldots, a)

NE: $A \rightarrow$ All players select upper
 edges OPT: $A^{\prime} \rightarrow$ Player i selects upper edges except between u_{i-1}, u_{i}

$$
P o A=s c(A) / s c\left(A^{\prime}\right)=n \cdot a / n=n
$$

Symmetric CM \mathcal{C}. In \mathcal{C} at least one player incurs cost at least a between u_{i-1}, u_{i} All stages are independent, so $\exists N E$ s.t. the same player incurs cost at least a in every stage. $P o A=n$

Series Parallel Congestion Games

Theorem
For every series-parallel congestion game there is a CM with $P o A \leq n$

Series Parallel Congestion Games

Theorem

For every series-parallel congestion game there is a CM with $P o A \leq n$

Potential $P(A)$

$A=\left(A_{1}, \ldots, A_{n}\right)$: set of strategies, n^{e} : number of occurences of edge e in the paths A_{1}, \ldots, A_{n} then $P(A)=\sum_{e} \sum_{k=1}^{n^{e}} c^{e}(k)$
A is a $N E \Leftrightarrow P(A)$: local minimum

Series Parallel Congestion Games

Theorem

For every series-parallel congestion game there is a CM with $P o A \leq n$

Potential $P(A)$

$A=\left(A_{1}, \ldots, A_{n}\right)$: set of strategies, n^{e} : number of occurences of edge e in the paths A_{1}, \ldots, A_{n} then $P(A)=\sum_{e} \sum_{k=1}^{n^{e}} c^{e}(k)$
A is a $N E \Leftrightarrow P(A)$: local minimum

Lemma 1

$\forall A: s c(A) \leq P(A) \leq n \cdot s c(A)$

Proof

- $s c(A)=\max _{i} c_{i}=\max _{i} \sum_{e \in A_{i}} c^{e}\left(n^{e}\right) \leq \sum_{e} c^{e}\left(n^{e}\right) \leq$

$$
\leq \sum_{e} \sum_{k=1}^{n^{e}} c^{e}(k)=P(A)
$$

- $P(A)=\sum_{e} \sum_{k=1}^{n^{e}} c^{e}(k) \leq \sum_{e} n^{e} c^{e}\left(n^{e}\right)=\sum_{i} c_{i} \leq$

$$
\leq n \max _{i} c_{i}=n \cdot s c(A)
$$

CM for series-parallel networks

Coordination Mechanism \mathcal{C}
Let $A^{*}=\left(A_{1}^{*}, \ldots, A_{2}^{*}\right)$ an optimal set of strategies, large $a \gg 1$

$$
\hat{c}^{e}(k)=\left\{\begin{array}{l}
c^{e}(k), k \leq n^{e}\left(A^{*}\right) \\
a \cdot m, \forall k \text { when } n^{e}\left(A^{*}\right)=0 \\
a, \quad \text { otherwise }
\end{array}\right.
$$

CM for series-parallel networks

Coordination Mechanism \mathcal{C}
Let $A^{*}=\left(A_{1}^{*}, \ldots, A_{2}^{*}\right)$ an optimal set of strategies, large $a \gg 1$

$$
\hat{c}^{e}(k)=\left\{\begin{array}{l}
c^{e}(k), k \leq n^{e}\left(A^{*}\right) \\
a \cdot m, \forall k \text { when } n^{e}\left(A^{*}\right)=0 \\
a, \quad \text { otherwise }
\end{array}\right.
$$

High cost a will discourage players to use edge e more than $n^{e}\left(A^{*}\right)$ times. $P(A)=P\left(A^{*}\right)$??

CM for series-parallel networks

Coordination Mechanism \mathcal{C}

Let $A^{*}=\left(A_{1}^{*}, \ldots, A_{2}^{*}\right)$ an optimal set of strategies, large $a \gg 1$

$$
\hat{c}^{e}(k)=\left\{\begin{array}{l}
c^{e}(k), k \leq n^{e}\left(A^{*}\right) \\
a \cdot m, \forall k \text { when } n^{e}\left(A^{*}\right)=0 \\
a, \quad \text { otherwise }
\end{array}\right.
$$

High cost a will discourage players to use edge e more than $n^{e}\left(A^{*}\right)$ times. $P(A)=P\left(A^{*}\right)$??

Lemma 2

$A_{1}^{*}, \ldots, A_{n}^{*}$: edge-disjoint $s-t$ paths in a series-parallel multi-graph, A_{1}, \ldots, A_{k} : any other $s-t$ paths with $k<n$. Then $\exists s-t$ path with edges that appear in $A_{1}^{*}, \ldots, A_{n}^{*}$ but not in A_{1}, \ldots, A_{k}

CM for series-parallel networks

Proof of Theorem

Series parallel(directed) graph, optimalset of strategies
$A^{*}=\left(A_{1}^{*}, \ldots, A_{n}^{*}\right)$, NE $A=\left(A_{1}, \ldots, A_{n}\right)$.
We will show that $\forall e, n^{e}(A) \leq n^{e}\left(A^{*}\right)$

CM for series-parallel networks

Proof of Theorem

Series parallel(directed) graph, optimalset of strategies
$A^{*}=\left(A_{1}^{*}, \ldots, A_{n}^{*}\right)$, NE $A=\left(A_{1}, \ldots, A_{n}\right)$.
We will show that $\forall e, n^{e}(A) \leq n^{e}\left(A^{*}\right)$

- Paths in A use only edges that appear in A^{*}, else i would switch to any low cost path in A^{*}

CM for series-parallel networks

Proof of Theorem

Series parallel(directed) graph, optimalset of strategies
$A^{*}=\left(A_{1}^{*}, \ldots, A_{n}^{*}\right)$, NE $A=\left(A_{1}, \ldots, A_{n}\right)$.
We will show that $\forall e, n^{e}(A) \leq n^{e}\left(A^{*}\right)$

- Paths in A use only edges that appear in A^{*}, else i would switch to any low cost path in A^{*}
- Arbitary player i, A_{-i} paths of remaining players.

Lemma $2 \Rightarrow \exists$ path p s.t. $n^{e}\left(A_{-i}\right) \leq n^{e}\left(A^{*}\right)-1, \forall e \in p$

CM for series-parallel networks

Proof of Theorem

Series parallel(directed) graph, optimalset of strategies
$A^{*}=\left(A_{1}^{*}, \ldots, A_{n}^{*}\right)$, NE $A=\left(A_{1}, \ldots, A_{n}\right)$.
We will show that $\forall e, n^{e}(A) \leq n^{e}\left(A^{*}\right)$

- Paths in A use only edges that appear in A^{*}, else i would switch to any low cost path in A^{*}
- Arbitary player i, A_{-i} paths of remaining players.

Lemma $2 \Rightarrow \exists$ path p s.t. $n^{e}\left(A_{-i}\right) \leq n^{e}\left(A^{*}\right)-1, \forall e \in p$
If i uses edge e^{\prime} with $n^{e^{\prime}}\left(A^{*}\right) \leq n^{e^{\prime}}(A)$ then p is a strategy for player i with $n^{e}\left(A_{i}\right) \leq n^{e}\left(A^{*}\right), \forall e \in p$ (less expensive)
A is NE \Rightarrow Player i only uses edges e with $n^{e}(A) \leq n^{e}\left(A^{*}\right)$

CM for series-parallel networks

Proof of Theorem

Series parallel(directed) graph, optimalset of strategies
$A^{*}=\left(A_{1}^{*}, \ldots, A_{n}^{*}\right)$, NE $A=\left(A_{1}, \ldots, A_{n}\right)$.
We will show that $\forall e, n^{e}(A) \leq n^{e}\left(A^{*}\right)$

- Paths in A use only edges that appear in A^{*}, else i would switch to any low cost path in A^{*}
- Arbitary player i, A_{-i} paths of remaining players.

Lemma $2 \Rightarrow \exists$ path p s.t. $n^{e}\left(A_{-i}\right) \leq n^{e}\left(A^{*}\right)-1, \forall e \in p$
If i uses edge e^{\prime} with $n^{e^{\prime}}\left(A^{*}\right) \leq n^{e^{\prime}}(A)$ then p is a strategy for player i with $n^{e}\left(A_{i}\right) \leq n^{e}\left(A^{*}\right), \forall e \in p$ (less expensive)
A is NE \Rightarrow Player i only uses edges e with $n^{e}(A) \leq n^{e}\left(A^{*}\right)$
Hence $P(A) \leq P\left(A^{*}\right)$ and Lemma $1 \Rightarrow s c(A) \leq n \cdot s c\left(A^{*}\right) \Rightarrow$
$P o A=\sup _{A} \frac{s c(A)}{s c\left(A^{*}\right)} \leq n$

Generalization of machine scheduling

Unrelated machine sceduling $\left(R \| C_{\max }\right)$
n players/jobs, m machines, $p_{i j}$ processing time of job i in machine j, μ schedule function: maps each job to a machine, $M_{j}=\sum_{i: j=\mu(i)} p_{i j}$ makespan of machine j.

Different assumptions on $p_{i j}$ yield different sceduling problems

Generalization of machine scheduling

Unrelated machine sceduling $\left(R \| C_{\max }\right)$
n players/jobs, m machines, $p_{i j}$ processing time of job i in machine j, μ schedule function: maps each job to a machine, $M_{j}=\sum_{i: j=\mu(i)} p_{i j}$ makespan of machine j.

Different assumptions on $p_{i j}$ yield different sceduling problems
Identical Machine Scheduling $\left(P \| C_{\max }\right)$
For each job i and machines $j, k p_{i j}=p_{i k}=p_{i}$

Generalization of machine scheduling

Unrelated machine sceduling $\left(R \| C_{\max }\right)$
n players/jobs, m machines, $p_{i j}$ processing time of job i in machine j, μ schedule function: maps each job to a machine, $M_{j}=\sum_{i: j=\mu(i)} p_{i j}$ makespan of machine j.

Different assumptions on $p_{i j}$ yield different sceduling problems
Identical Machine Scheduling $\left(P \| C_{\text {max }}\right)$
For each job i and machines $j, k p_{i j}=p_{i k}=p_{i}$
Uniform/related machine sceduling $\left(Q \| C_{\text {max }}\right)$
$p_{i j}=p_{i} / s_{j}$ where p_{i} processing requirement of job i and s_{j} speed of machine j.

Generalization of machine scheduling

Unrelated machine sceduling $\left(R \| C_{\max }\right)$
n players/jobs, m machines, $p_{i j}$ processing time of job i in machine j, μ schedule function: maps each job to a machine, $M_{j}=\sum_{i: j=\mu(i)} p_{i j}$ makespan of machine j.

Different assumptions on $p_{i j}$ yield different sceduling problems Identical Machine Scheduling $\left(P \| C_{\text {max }}\right)$
For each job i and machines $j, k p_{i j}=p_{i k}=p_{i}$
Uniform/related machine sceduling $\left(Q \| C_{\text {max }}\right)$
$p_{i j}=p_{i} / s_{j}$ where p_{i} processing requirement of job i and s_{j} speed of machine j.

Restricted assignment or bipartite sceduling ($B \| C_{\text {max }}$) Job i can be scheduled on $S_{i} \subseteq M . p_{i j}=p_{i}$, if $j \in S_{i}$ and $p_{i j}=\infty$ otherwise

Different Coordination Mechanisms

Coordination Mechanisms (sets of sceduling policies)

- ShortestFirst: non-decreasing order of jobs
- LongestFirst: non-increasing order of jobs
- Randomized: random order of jobs
- Makespan: Process all jobs on the same machine in parallel $\left(p_{j i}=M_{j}\right)$

Different Coordination Mechanisms

Coordination Mechanisms (sets of sceduling policies)

- ShortestFirst: non-decreasing order of jobs
- LongestFirst: non-increasing order of jobs
- Randomized: random order of jobs
- Makespan: Process all jobs on the same machine in parallel $\left(p_{j i}=M_{j}\right)$

Price of anarchy for the different policies and scheduling problems

	Makespan	ShortestFirst	LongestFirst	Randomized
$P\left\|\mid C_{\max }\right.$	$2-\frac{2}{m+1}$	$2-\frac{1}{m}$	$\frac{4}{3}-\frac{1}{3 m}$	$2-\frac{2}{m+1}$
$Q\left\|\mid C_{\max }\right.$	$\Theta\left(\frac{\log m}{\log \log m}\right)$	$\Theta(\log m)$	$1.52 \leq P \leq 1.59$	$\Theta\left(\frac{\log m}{\log \log m}\right)$
$B\left\|\mid C_{\max }\right.$	$\Theta\left(\frac{\log m}{\log \log m}\right)$	$\Theta(\log m)$	$\Theta(\log m)$	$\Theta(\log m$
$R\left\|\mid C_{\max }\right.$	Unbounded	$\log m \leq P \leq m$	Unbounded	$\Theta(m)$

Scheduling Policies

Policy is run locally at each machine, no access to information for the global state (P_{j} policy for machine j, S_{j} jobs assigned to j)

Scheduling Policies

Policy is run locally at each machine, no access to information for the global state (P_{j} policy for machine j, S_{j} jobs assigned to j)

- Strong local policy P_{j} : Only makes use of processing time of jobs $i \in S_{j}$ on j and assigns i a completition time $P_{j}\left(S_{j}, i\right)$
- Local policy P_{j} : Makes use of all parameters of jobs $i \in S_{j}$ and assigns each i a completition time $P_{j}\left(S_{j}, i\right)$ (Ex. Uses processing times of $i \in S_{j}$ on other machines)

Scheduling Policies

Policy is run locally at each machine, no access to information for the global state (P_{j} policy for machine j, S_{j} jobs assigned to j)

- Strong local policy P_{j} : Only makes use of processing time of jobs $i \in S_{j}$ on j and assigns i a completition time $P_{j}\left(S_{j}, i\right)$
- Local policy P_{j} : Makes use of all parameters of jobs $i \in S_{j}$ and assigns each i a completition time $P_{j}\left(S_{j}, i\right)$ (Ex. Uses processing times of $i \in S_{j}$ on other machines)
- Non-preemtive policy: Processes each job in an uninterrupted fashion without any delay
- Independence of irrelevant alternatives property(IIA): For any set S of jobs and $i, i^{\prime} \in S$, then $\forall k$ job $P_{j}(S, i)<P_{j}\left(S, i^{\prime}\right) \Rightarrow P_{j}(S \cup\{k\}, i)<P_{j}\left(S \cup\{k\}, i^{\prime}\right)$,
- Ordering policy: Orders the jobs non-preemptively based on a global ordering (deterministic non-preemtive policy with IIA is an ordering policy)

Upper bound for Poo of $\left(R\left\|\|_{m a x}\right)\right.$

Notation

- $p_{i}=\min _{j} p_{i j}$
- Inefficiency of job $i: e_{i j}=p_{i j} / p_{i}$
- min-weight of set $S: \sum_{i \in S} p_{i}$
- $W=\sum_{1 \leq i \leq n} p_{i}$
- $M_{k j}$: jobs(parts) processed on j after time $2 k O P T$ in a PNE
- $M_{k}=\bigcup_{1 \leq j \leq m} M_{k j}$
- $R_{k j}=\sum_{i \in M_{k j}} p_{i}$, if job i partially processed on j for x units of time after $2 k O P T$, contributes $x / e_{i j}=x p_{i} / p_{i j}$ to $R_{k j}$

Upper buund for Pod of $\left(R\left\|\|_{m a x}\right.\right.$

Notation

- $p_{i}=\min _{j} p_{i j}$
- Inefficiency of job $i: e_{i j}=p_{i j} / p_{i}$
- min-weight of set $S: \sum_{i \in S} p_{i}$
- $W=\sum_{1 \leq i \leq n} p_{i}$
- $M_{k j}$: jobs(parts) processed on j after time $2 k O P T$ in a PNE
- $M_{k}=\bigcup_{1 \leq j \leq m} M_{k j}$
- $R_{k j}=\sum_{i \in M_{k j}} p_{i}$, if job i partially processed on j for x units of time after $2 k O P T$, contributes $x / e_{i j}=x p_{i} / p_{i j}$ to $R_{k j}$

Inefficiency-based policy

Each machine j orders the jobs assigned to it in the non-decreasing order of their inefficiency $e_{i j}$

Upper bound for Poo of $\left(R\left\|\|_{m a x}\right)\right.$

Theorem
PoA for $\left(R \| C_{\max }\right)$ for the inefficiency-based policy is at most $2 \log m+4$

Upper bound for Poo of $\left(R\left\|\|_{n a x}\right)\right.$

Theorem
PoA for $\left(R \| C_{\max }\right)$ for the inefficiency-based policy is at most $2 \log m+4$

Lemma

$\forall k \geq 1, R_{k} \leq \frac{1}{2} \cdot R_{k-1}$

Upper bound for Poo of $\left(R\left\|\|_{m a x}\right)\right.$

Theorem

PoA for $\left(R \| C_{\max }\right)$ for the inefficiency-based policy is at most $2 \log m+4$

Lemma

$\forall k \geq 1, R_{k} \leq \frac{1}{2} \cdot R_{k-1}$
Proof(Lemma).
O_{j} jobs processed on machine j by $O P T, O_{k j}=O_{j} \cap M_{k}$, $f_{k j}$ minimum inefficiency (on machine j) of all $i \in O_{k j}$ in the NE assignment**.

Upper buund for Pod of $\left(R\left\|\|_{m a x}\right.\right.$

Theorem

PoA for $\left(R \| C_{\max }\right)$ for the inefficiency-based policy is at most $2 \log m+4$

Lemma

$\forall k \geq 1, R_{k} \leq \frac{1}{2} \cdot R_{k-1}$

Proof(Lemma).

O_{j} jobs processed on machine j by $O P T, O_{k j}=O_{j} \cap M_{k}$, $f_{k j}$ minimum inefficiency (on machine j) of all $i \in O_{k j}$ in the NE assignment**.
If $O_{k j} \neq \emptyset$ then in the NE assignment all jobs i on j with $e_{i j} \leq f_{k j}$ have $\operatorname{ct}(i) \leq(2 k-1) O P T$,
Otherwise $i \in O_{k j}$ with $e_{i j}=f_{k j}$ would move to j and have $c t(i) \leq(2 k-1) O P T+O P T=2 k O P T$.

Proof (cont'd)

Hence j processes jobs i of $e_{i j} \leq f_{k j}$ between times $(2 k-2) O P T$ and $(2 k-1)$ OPT which implies

$$
\begin{equation*}
R_{k-1, j}-R_{k j} \geq O P T / f_{k j} \tag{1}
\end{equation*}
$$

Proof (cont'd)

Hence j processes jobs i of $e_{i j} \leq f_{k j}$ between times $(2 k-2) O P T$ and $(2 k-1)$ OPT which implies

$$
\begin{equation*}
R_{k-1, j}-R_{k j} \geq O P T / f_{k j} \tag{1}
\end{equation*}
$$

But $i \in O_{k j}$ processed by $O P T$ on j with inefficiency $e_{i j} \geq f_{k j}$ hence min-weight of $O_{k j}$ is

$$
\begin{equation*}
\sum_{i \in O_{k j}} p_{i} \leq \frac{\sum_{i \in O_{k j}} p_{i j}}{f_{k j}}=O P T / f_{k j} \tag{2}
\end{equation*}
$$

Proof (cont'd)

Hence j processes jobs i of $e_{i j} \leq f_{k j}$ between times $(2 k-2) O P T$ and $(2 k-1)$ OPT which implies

$$
\begin{equation*}
R_{k-1, j}-R_{k j} \geq O P T / f_{k j} \tag{1}
\end{equation*}
$$

But $i \in O_{k j}$ processed by $O P T$ on j with inefficiency $e_{i j} \geq f_{k j}$ hence min-weight of $O_{k j}$ is

$$
\begin{equation*}
\sum_{i \in O_{k j}} p_{i} \leq \frac{\sum_{i \in O_{k j}} p_{i j}}{f_{k j}}=O P T / f_{k j} \tag{2}
\end{equation*}
$$

(1), (2) $\Rightarrow R_{k-1, j}-R_{k j} \geq \min$ weight of $i \in O_{k j}$.

Sum over all j, since $M_{k}=\cup_{j} O_{k j}$

$$
R_{k-1}-R_{k} \geq R_{k} \Rightarrow R_{k-1} \geq 2 R_{k}
$$

Proof(Theorem)

For $k=b=\lceil\log m\rceil$
Lemma $\Rightarrow R_{b} \leq \frac{R_{b-1}}{2}=\frac{R_{b-2}}{4}=\cdots=\frac{R_{0}}{m}=\frac{W}{m} \leq O P T$
(Total processing time of jobs i with $e_{i j}=1$ at most $O P T$)
Hence $\forall i$ job , $c t(i) \leq 2 b O P T+O P T=(2 b+1) O P T$ (worst-case, all jobs with $c t(i)>2 b O P T$ move to the same machine)

Proof(Theorem)

For $k=b=\lceil\log m\rceil$
Lemma $\Rightarrow R_{b} \leq \frac{R_{b-1}}{2}=\frac{R_{b-2}}{4}=\cdots=\frac{R_{0}}{m}=\frac{W}{m} \leq O P T$
(Total processing time of jobs i with $e_{i j}=1$ at most $O P T$)
Hence $\forall i$ job , $c t(i) \leq 2 b O P T+O P T=(2 b+1) O P T$
(worst-case, all jobs with $c t(i)>2 b O P T$ move to the same machine)

Let job i with $c t(i)>2 b O P T, i$ moves on j with $e_{i j}=1$ Start time $\leq(2 b+1) O P T, c t(i) \leq(2 b+2) O P T$

Proof(Theorem)

For $k=b=\lceil\log m\rceil$
Lemma $\Rightarrow R_{b} \leq \frac{R_{b-1}}{2}=\frac{R_{b-2}}{4}=\cdots=\frac{R_{0}}{m}=\frac{W}{m} \leq O P T$
(Total processing time of jobs i with $e_{i j}=1$ at most $O P T$)
Hence $\forall i$ job , $c t(i) \leq 2 b O P T+O P T=(2 b+1) O P T$
(worst-case, all jobs with $c t(i)>2 b O P T$ move to the same machine)

Let job i with $c t(i)>2 b O P T, i$ moves on j with $e_{i j}=1$ Start time $\leq(2 b+1) O P T, c t(i) \leq(2 b+2) O P T$

Since assignment is a NE $\max _{i} c t(i) \leq(2 b+2) O P T \leq(2 \log m+4) O P T \quad \square$

